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Tutorial and example materials, updated June 2022 
 

Figure A:   Launch screen after a SPY, QQQ run, 30 day backtest, with arrow 
showing the best of 3 models in the backtest 

Version 2.6 

[Note:  The coinflips to achieve backtest values in the screen shots and 
discussions in this document are slightly incorrect versus theory, mostly noticeable for 



small backtest counts.  A small fix to the code was added to Version 2.6 for correcting 
this.] 

This app models the (close-open) price direction (today's price travel) of a given target 
asset... as a function of prior days' opening and closing prices of the asset in question and 
related assets which you specify.  The app does not attempt to figure out what those 
related assets are, you have to specify them.  However, the app does have a feature to 
discard unneeded variables from the more advanced models.  Nonetheless, it is best not to 
include random asset symbols into the candidate predictor asset list, as the job of 
forecasting is difficult enough without including irrelevant data in a model on purpose. 
Included in "prior data" is a recent volatility estimate.  Since historical volatility is 
essentially a moving average (though not of price), the models contain some concept of 
longer time history behavior and "stickiness" of information. 

Terminology   

This app also works for ETFs if they are available in the IEX Cloud historical data.  As 
we see in the above Figure A example, we are studying SPY versus QQQ in the example 
run, which are both ETFs.  It also works for a selected subset of crypto-currencies as 
provided by the cryptocompare.com data provider.  

Since cryptocompare.com reports "closing" price for the always-open 24/7 crypto market 
at midnight GMT, one should not mix crypto and stock symbols in the same model, since 
stock prices report closing at 4PM US Eastern time.  This mixing is possible theoretically 
if one takes care, but this app does not handle such care at the present writing.  To avoid 
confusion, it is best not to mix crypto and stocks in the same model in this app, in the 
current release. 

Quick start 

1. Enter the symbol to forecast and up to ten candidate predictor symbols in the 
fields on the main Model tab of the app.  In this example, we are trying to forecast 
SPY as a function of prior values of itself and QQQ.  You don't need to re-enter 
SPY as a predictor variable, it is done automatically internally.  It may be good to 
start with a small number of predictor symbols and see if the model gets better or 
worse in backtest as you add each new symbol.  This is kind of a manual version 
of "forward stepwise regression" if you add one variable at a time and check 
backtest results at each before proceeding. 

2. Enter the number of days to backtest.  Or leave it at the default if you want.  In 
this example, we set backtest days to 30 (these are trading days so 30 is more than 
a month). 

http://cryptocompare.com
http://cryptocompare.com


3. Do a Backtest first (keep Anneal cooling rate set to Fast). 
a. Leave the backtest switch set to Backtest. 

4. Press Run.  Model backtest will run on the server.  In a few seconds, you should 
see action in the green report-out screen.  It will show intermediate results.  You 
can look near the top of the output area to see "30 backtest trials completed" in the 
above example...this number will be reported out periodically as the backtest 
proceeds so you can see the progress.  E.g. you might see 5, 7, 12, etc completed 
until it reaches the max you have specified. 

5. Results are reported out in the green text field.  Press the + button to expand 
the output to full screen.  Press … (which will show up where the + was) to go 
back to the small view and see all the other buttons.  You can also use the export 
button which appears on the expanded + view to save the contents of this field to 
a file or email etc. 

If you make a mistake and press Run before you are ready, press Stop to stop the 
run, and re-try.  

  
6. After you have found a series of symbols and settings that yield good backtests, 

you can set the button to Forecast 1 day ahead and make a forecast.  You should 
try this over several days and check to see how often your forecasts come true 
before acting on any such forecasts.  Since this is a statistical model, one does not 
expect the forecast to always be true.  The backtest may give an idea of how 
accurate the model might be in the future, but of course, the future may not be like 
the past and so future results may not be as accurate as the backtest results.   

An example forecast is shown in Figure C below.  Since SPY and QQQ are 
always moving every trading day, if you run the same test after this document was 
written, you will see different numbers in these results. 

Once you have model settings yielding a decent long backtest, it may be viable 
for several days without re-tuning.  Or you could recheck the backtest every day 
to be more sure.    

7.  As always, consult a professional investment advisor before trading.  Forecasting 
is often “fraught with imminent peril,” as you should well know. 

The top arrow in Figure B indicates which was the best model of the 3 models which are 
automatically run for every backtest and forecast.  Here, it was our simulated annealing 
model, model 1.  The bottom arrow indicates an estimate of model quality by estimating 
how easy it is to achieve this good of a result (60% directionally correct) by random coin 
flips.  In this example, there is a 1 in 10 chance of achieving this 60% directionally  



correct result via coinflips over the long run (e.g. if we did many, many sequences of 30 
flips).  See the Bonus features section below for more info on this topic.  Note that any 
individual sequence of 30 coin flips will widely vary in its "forecast" accuracy.   

We note that this particular model's quality is therefore noted as "Marginal" 
corresponding to 0.1002 or about a 10% value.     

 

 
The word choices of Marginal and Poor are not standard statistical terminology, but are 
kind of a red/green/yellow type of classification in the app to give "dashboard" / at-a-
glance view of the models without having to mull over numbers and think too much ("is 
higher better?  is lower better?"). 

Figure B:  Backtest results 
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Note that the other two models are only showing 50% directionally correct.  These two 
models are therefore being described as Poor models, since they are approximately 
similar to coin flipping in terms of accuracy for this range of backtest. 

If you like, you could use this Marginal-classified model 3 to make a forecast.  Switch the  
[Backtest / Forecast 1 Day] button to "Forecast 1 Day," then press Run again. 

Figure C shows the forecast results.  All 3 models are forecasted from, even if you only 
want to pay attention to one of the models, and the 3 forecasts are presented 
independently.  In this case, our best backtest was model 1, the annealing model.  This 
forecasts that the price will rise in the forecasted day (close - open).   

Figure C:  First example run SPY = 
f(SPY_prior, QQQ_prior) for 
forecasting 



Note also the day/date indicator.  We report the forecast day as the "trading day after" the 
last known day in our model data set to avoid having to account for holidays and 
weekends.  

Note also that the other two models that did not backtest well also forecasted the same 
directional change in price (close - open) for the forecasted day.  This is somewhat 
irrelevant, since our backtest showed that those two models did not backtest well and 
were similar to guessing the directional change.  Hence, it may be a bad idea to pay 
attention to these two models.  
  
However, we note this for future use, in case you get multiple models with reasonable 
backtest results.  In this latter case of good backtests for more than one model, you could 
apply a kind of "voting" process with the 3 forecasts to see if they agree.  In formal 
modeling, this is called an "ensemble" approach (an ensemble or collection of models 
where results from several models are blended together).  We do not provide the 
ensemble computations in this simple forecaster app (yet?), but merely report the results 
out of the 3 models separately.   

Model 1 and model 2 are mainly "reference" models which should be a baseline of 
accuracy.  E.g. they are both very simple linear models. 

Model tuning introduction 

Next, we can attempt to do some manual tuning of the models to achieve better backtests.   

Figure E:  left = prior run output; right = first attempt at coarse tuning output 

Figure D:  Coarse tuning switches 



 
The first level of tuning is found by adjusting two switches on the main Model tab of the 
app as shown above.  These are the Anneal cooling rate and the Model 3 type.  

These are coarse tuning parameters.    
 
Flipping the Anneal cooling rate to Slow affects only model 1, and flipping the Model 3 
switch to LassoLarsIC affects only model 3, so we can do both at once without causing 
confusion.  Let's try this and make a run:  Flip the two switches to their opposites, set the 
Backtest switch back to the Backtest position (instead of Forecast which we just did), and 
press Run again.  With the anneal cooling rate set to "Slow," the models take a bit longer 
to run. 
 

In this first attempt at getting a better backtest, we see that things have not improved, but 
have in fact degraded.  See Figure E and Figure F.  The percent correct from each model 
is worse (except for model two, which is the same 0.5 = "fifty-fifty chance" coinflip low 
quality).  Hence, there is no point to attempt a forecast with this model setup, as we don't 
think it will be better than our original trial based upon the backtests. 

Figure F:  Coarse tune example setup and output



Original trial:  model 1 percent correct was 0.6  
New model:  model 1 percent correct was 0.56 

Similarly, model 3's percent correct dropped from 0.5 (already poor) to 0.47. 

Note that when you run this study in the future from when this document was written, 
your numbers may vary, since the data for SPY and QQQ will be different.  In your future 
scenario, doing this coarse model adjustment may result in better backtests than the 
default setup. 

Hence, let's put the switches back to the way they were at the beginning (Fast anneal and 
KNN Classifier), and proceed with some more detailed refinements. 

After you flip the main screen switches back to where they were, go to the Tune tab of 
the app.    

 

Figure G:  Tune tab screen.  

Note the top data entry field, windowsize.  This is a fairly coarse tuning parameter.  It 
indicates how many prior days we want to feed into our model.  If we include too many 
days, we are trying to fit too long of a time period with perhaps many market shocks or 
"regime change / everything is different" events into one simple model.  If we include too 
few days, we may not have enough data to generalize from.  The default we have set up 
in the app is 200 days.  For a trial, let's cut this in half to 100 and then go back to the 
Model tab and and press Run again (in backtest mode of course). 

Window size is the first editable parameter on this screen; 
default is 200 days.  Try 100, see if your backtests get better. 
If not, try 150 or 250.  You will not likely see much change in 
results if you change this number by a small amount.



Figure H:  30 day backtest with window size set lower, to 100 (for the time period 
studied in this document).  [Results may vary for your trials, which 
will be in a future time period.] 

Here we see that by reducing the window size (number of points included in the model), 
the annealing model 1 got worse, and the model 3 (currently the KNN model) got better.   
The middle model 2 got worse also, but let's ignore this for the moment, as model 2 is a 
reference linear model that has all variables in it.  Model 3 only got up to "Marginal" 
quality, and in fact is showing less than the 0.6 directional accuracy from our original 
model 1 annealing trial.  Here we see model 3 accuracy is 0.566 directional accuracy 
(about 57%) during the 30 day backtest, versus our original annealing result of 0.6 (e.g. 
annealing was better...refer back to Figure B). 

The positive results from this test is that model 3 is our most tunable model in this app, as 
we shall see in the next section.  If model 3 got somewhat better by tuning one parameter, 
we may be able to boost its accuracy further by tuning additional parameters. 

Those with some exposure to machine learning might start to recognize this as an 
example of "hyper-parameter tuning" of a model.  Since hyper-parameters are merely 
ordinary parameters in this app's case (numbers or on/off type of switch settings), we 



leave off the hyper- prefix to reduce confusion with new users.  It starts to sound a little 
bit too "Star Wars" with the hyper- prefix, and it is not that at all. 

Pro tip 
  
 Machine learning (hyper-)parameters must be tuned all together for best results,  
 since they often interact with one another.  If we tune them one at a time as we do   
 in this example, we may get sub-optimal results.  However, we may be able to   
 get better results via this manual tuning than by taking all model parameters at   
 their default settings.  E.g., some less than optimal tuning may be better than no  
 tuning at all. 

We will continue to adjust model 3 by changing the % cutoff parameter as shown in 
Figure I above.  Default is 20; we set it to 30.  What this does is:  discards more internal 
variables that might be causing more problems than benefits in the model.  It throws out 
variables that seem to have less effect on the results.  After changing this number to 30, 
go back to the Model tab and press run again to backtest the new model settings.   

Pro tip   

 This automatic elimination of variables that make the model worse is known as 
 "feature selection" in machine learning parlance.  

Here we see that model 3 improved again.  Removing more variables from the model 
improved the backtest.  Which variables, you ask?  This is a topic that shall wait for a 
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more detailed exposition.  The short answer is:  variables that seem to contribute less to 
the results overall are eliminated.   

However, this improvement may not be the case for your model runs with different 
symbols than SPY and QQQ.  You may increase % cutoff as we did here, and get worse 
backtest results.  Conversely, you might see that if you instead reduced the % cutoff 
value, your backtest gets better.  Such is a fact of life in modeling the ever-changing 
market with a simple model builder such as this, with manual model tuning. 

But let us examine the results further:  Now we see that our model 3 backtest is classified 
as Good, with a value of 0.049 (this is the estimated p-value for the statisticians out 
there).  This suggests that to get 63% directionally accuracy by merely flipping coins 30 
times, we would have to be fairly lucky:  Such a 63% accurate result will only happen 
about 5% of the time if we did those batches of 30 coin flips many many times.  A model 
that can be beat by randomness about 5% of the time or less is often considered a 
reasonable model in statistics.  5% is a 1 in 20 chance, a fairly good bet if you are on the 
19 to 20 side of it [see Note 1]. 

Figure J:  30 day backtest results (windowsize 
= 100, % cutoff for variable weedout = 30%).  
Model 3 is the model being tuned.  Results 
improved to 63% directionally correct.  



Since we have improved our model backtest quality from our initial trial run with default 
parameters, let's run the model to FORECAST again.  Flip the button over from Backtest 
to Forecast, and Run again. 

Interestingly, the results for our time period are identical to our initial default setup.  All 3 
models forecasted "price will rise" on the next day.  E.g. the results are identical to those 
shown in Figure C.  This is partially due to the fact that we only attempt to forecast 
directional change (bullish/bearish) rather than specific percent changes of an asset.   

Practical considerations and caveats 

Note that in our best backtest above, it showed 63% correct directional accuracy, so even 
though the p-value (coinflip test) was the fairly low 5%, it still suggests that the model 
may be wrong 37% of the time (100-63).  So if we follow this forecast and try to make a 
trade based upon it, the 30 day backtest shows that we may be wrong 37% of the time.  Is 
this better or worse than following your "intuition" or recommendations from market 
commentators or the myriad of other sources of market information?  These are questions 
we cannot answer at the moment with the data at hand, but questions you should think 
about if you use these models. 

Also, there is the important consideration that even if a model might backtest well, what 
happens tomorrow may be an epoch change or bolt-from-the-blue change (one country 
invades another unexpectedly, terrible earthquake, general market crash for technical 
reasons, etc).  E.g. Tomorrow may not be anything like the recent past at all.  

Tuning discussion  

As we see here, after a few trials and changing a couple of parameters, we were able to 
improve the model's backtest quite a bit.  There is likely more that could be done to 
improve this backtest, either by changing the window size and % cutoff value more, in a 
more fine grained manner (e.g. iterating on those two variables' values to get better 
backtests), and/or tuning the other main parameter K... the nearest neighbor count.  Those 
interested in tuning KNN models should look up the theory of them: 

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm 

In general, making K larger makes the model act more like a low-pass filter to filter out 
noise or un-modeled shocks (making the model flatter or more linear).  Making K smaller 
allows the model to fit known data more accurately, with the downside that it may not be 
able to forecast unknown data as well.  E.g. it may not be able to generalize to the future 
as well as it fits the past.  Hence we often tend to larger values of K in a K-nearest model, 
but not too large, or else we might ignore some important data.  This is why we dont have 
K set to a default of, say, 2 or 3.  You can try this yourself by setting the K value to 2 or 3 

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm


and re-running a backtest.  You will likely see model 3 showing up as "Poor" for any 
symbols you might have modeled. 

The Method / Theory 

You don't need to read this section to use the app, but you might be interested. 

From Wikipedia: 

"The only prior knowledge required is a list of variables which can be hypothesized to 
affect each other intertemporally." 

http://en.wikipedia.org/wiki/Vector_autoregression 

For example, one might want to test whether the price change of General Motors today 
(GM) might depend on the recent prices of oil (USO is an oil ETF).  This can be modeled 
using a tool such as this.  

Such a hypothesis that the change in one asset price might affect another related asset in 
later days might not be true.  It is only a hypothesis.  There may not be a predictive 
relationship for your chosen symbols with the model types we are building.  Nonetheless, 
a model can be built with the app for this case, though it will be a model that backtests 
and forecasts poorly.  In this case, a model's backtest will be poor (low % correct) and the 
model is probably not useful for forecasting.  Hence, backtesting is critical for the proper 
use of this app. 

Only price travel Direction is modeled, not the actual price change in dollars.  Internally, 
we actually do model the internal dollar change for close-open price for some of the 
model types.  However, we only report out the overall gain or loss as a binary flag during 
the day to avoid interpretations of misleading accuracy. 

Calculations are done on a server.  This avoids undue battery drain on your iOS device.   

We don’t report out traditional statistics such as how well the model actually fits the data 
in question (such as R-square, Adjusted R-square, or percent days fit properly), because 
those numbers can be misleadingly accurate for this type of model, where we want to 
find small signals amidst a lot of noise.  Rather, we recommend looking at backtests to 
assess model quality as we do here. 



Backtesting procedure internals 

We already have the “day of forecast” prices for past data, so we just have to “hold our 
hand over” the prices that day and forget they are there when building the model, then run 
a forecast with the model and see if it matches our withheld data. 

In the case where backtests give reasonable results over a series of prior days, the model 
may have some predictive power for 1 day ahead forecasts.  How long of a successful 
backtest is needed for the model to be useful is an open question.  Should you only rely 
on longer backtests, or should you rely on more recent (shorter) backtests before you 
apply a model to forecasting?  There are benefits and drawbacks to both strategies:  if 
your backtest is too long, you are pulling in data that may no longer be relevant to 
tomorrow's results.  If you backtest is too short, it may not be robust enough and you may 
be tuning your model to recent one-off events that don't generalize into the future.  

When backtesting, the model is rebuilt every day of the backtest and then used to forecast 
one day ahead. 

Calculations for backtesting may take several minutes.  You can start off a backtest trial 
then go back to the app later and press Get Status / last models to retrieve the results in 
progress or completed. 

Example 

Let us consider again the example of the price of GM being a function of some prior 
prices of USO (oil ETF). 

For the GM = f(USO) example, the following data table is automatically generated 
internally.  Then, models are fit to it using a variety of machine learning and regression 
methods. 

Values included in the data table for this example are as follows, assembled from source 
data (IEX): 

GM close - open (value to forecast; dependent variable) 

GM close 1 day ago (yesterday) 
GM close 2 days ago 
GM open 1 day ago (yesterday) 
GM open 2 days ago  

similarly for USO, abbreviated: 



USO close1 
USO close2 
USO open1 
USO open2 

This yields 1 variable as a function of 8 other variables. 

The model form then becomes: 

GMcloseMinusOpen = f(GMc1, GMc2, GMo1, GMo2, USOc1, USOc2, USOo1, 
USOo2) 

Models are solved using "daily differenced" data rather than raw price levels to remove 
issues due to drift and other "non stationarity" issues.  For more details, see:  

 http://en.wikipedia.org/wiki/Unit_root 

Both the raw price levels and the daily differenced versions of the regression tables may 
be downloaded under the Data & Info tab for further exploration in other tools such as 
Apple’s Numbers or Microsoft Excel or other machine learning / data analysis tools. 

Note that all variables on the right side of the above equation are easily looked up before 
the market opens (all are prior days' data). 

It is uncertain exactly when during the evening that IEX Cloud history data is posted for 
availability, but it is sometime after the close of the market of course. 

By default, 200 recent historical data points are used to solve the model (e.g. these are the 
input data points to the models).  We do not feed all historical data into the model but 
rather we use a rolling window of points, with the window size being user settable.  This 
is tunable in the Tune tab as noted in the above tutorial.  By limiting the window, we are 
allowing simpler models to be used, possibly to good results.  

Three model types for f( ) are generated: 

model 1:  a simulated annealing classifier model 
model 2:  a simple linear least squares model 
model 3:  a K-Nearest classifier model or LarsLassoIC linear model 

More information on these model types: 

http://en.wikipedia.org/wiki/Simulated_annealing 

http://en.wikipedia.org/wiki/Simulated_annealing


http://en.wikipedia.org/wiki/Ordinary_least_squares 

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm 

https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC 

The final model type LassoLarsIC is a linear model type with automatic variable 
elimination based upon the somewhat mysterious (to the uninitiated at least; possibly also 
to the initiated) "information criteria" as noted in the above link.  Since it is a linear 
model, it may be more useful for shorter time periods and shorter backtests rather than 
longer versions of each.  E.g. it may be better at picking up "local" (in time) effects. 

Classifier? 

By a “classifier” model, it merely means that we are trying to classify the data into two 
groups:  a gain group and a loss group, or, equivalently, a bullish group and a bearish 
group.  The “zero change” value is not considered…the models are not accurate enough 
to predict the no-change condition to the penny. 

Anneal Cooling Rate 

Setting the cooling rate to Fast will sometimes yield less accurate answers for model 1 
(the anneal model), but the overall backtest will run much faster (seconds instead of 
minutes).  Conversely, sometimes you will find that the setting the anneal cooling rate to 
"fast" will give better backtests.  It may be that when we set the cooling rate to slow, the 
model attempts to "overfit" the data [overfit = another machine learning vocabulary 
word, also relevant to standard statistical models such as linear regression].  The Fast 
cooling mode is useful if you are mainly interested in models 2 and 3 (least square and K-
Nearest), in which case you don't need to use Slow Annealing since you will be ignoring 
that model.  It may be a good idea to run a backtest with cooling set to Fast, then if you 
are not satisfied with models 2 and 3, re-run the test with cooling set to Slow and see if 
model 1 quality is any better than models 2 and 3.  The annealing model is fairly crude so 
we do not provide fine-grained tuning of it, but we do provide the fast/slow switch for 
tuning this model in the current version of the app. 

Bonus features 

"Coinflips" info during backtesting: 

When making forecasts of anything, correctness may depend on random circumstances 
rather than on your stellar predictive expertise.  In other words, you may just get lucky.  
However, it's more difficult to be lucky over a longer period than over a shorter period.   

http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html#sklearn.linear_model.LassoLarsIC


The coinflip tests help you assess if the models you just built were "just lucky" over the 
backtest period or not. 

For example, a model may yield 75% correct results during backtesting.  However, it's 
fairly easy to get 75% accurate results randomly if you only run 4 backtest trials (3 out of 
4 correct = 75%).  

On the other hand, if you run 20 trials and get 75% or more directionally correct, this is a 
good indicator that you may have a predictive model in the backtest period.  It is much 
less likely that you will get 75% correct answers after 20 trials just by guessing.  During 
backtesting, we report out this type of analysis.   

More detailed information on this:  http://en.wikipedia.org/wiki/Binomial_test  

Backtest results interpretation 

Let us look at the output of a particular example backtest run (this is a different model 
than the SPY/QQQ model above). 

  

Here, our 10 backtest trial showed that 7 of 10 backtests were correct for the “custom 
model” (our K-Nearest classifier), or 70% accurate, reported as 0.7. 

This is marked as the ! best model on the output (best for this backtest run sequence).   

The “coinflips” value is 0.0546 (or about 5%), which means that there is only a 5% 
chance of getting 7 of 10 correct if we were to flip 10 coins. 



So, this is a pretty good model.  Not stellar, but pretty good in the backtest period. 

The formal name for this "probability of getting the answer randomly" is the p-value* 

http://en.wikipedia.org/wiki/P-value 

 * Pro tip  

 Here we are being conversational and colloquial.  Statisticians have a  
 very precise definition for the p-value of a regression, which definition is  
 far out of scope of this document.   

This topic may be very confusing for the non-statistician to understand if he looks at 
those links, so don't worry too much about it.  Just think:  "how likely would it be for me 
to guess my asset price direction correctly for 20 days by flipping coins."  Not very 
likely, right?  Also consider that the likelihood (using the colloquial meaning of 
"likelihood") of getting 70% correct just by random chance goes down as you increase 
the number of backtest days to 30, 50, 100, etc. 

Other buttons in the app 

Stop      Stop a model run in progress (a backtest or a forecast). 

Get Status / Last Models Pull the status of a model run and the accuracy of 
the last models created.  Useful when you launch 
a run, leave the app to send a text or etc, then return 
to the app to check it later. 

Get log Pull a detailed log file of the server run for debugging 
 purposes and the curious.  You can typically ignore this 
 technical information if you are only interested in summary 

results.  Here you will find unformatted outputs of the run 
on the server including some coefficient information if you 
are interested in what is going on behind the scenes. 

Data & Info tab 

You can use this tab to download the data tables generated for your own use in MS Excel, 
Apple Numbers, or other apps... including other machine learning software.  This 
contains the historical data sets for all the symbols you had specified, properly aligned 
according to date and with 1 and 2 day lagged variables generated per each open and 
close price.  When aligning, the target symbol is the master date column.  All other 
symbols are aligned to it.   



You can also audit the accuracy of data from these Downloadable files. 
Missing data is not handled in any special way in this first release, it is just left out. If 
one of the Candidate predictor symbols has missing data in its history (i.e., does Not have 
data where it is supposed to be), the system may not solve properly.  In general, we just 
skip an entire day's data if there is missing data in any of the symbols.  If this happens 
infrequently, the one or few data points resulting may be outliers in the data set, and it 
may not have a noticeable effect on the model.  "Your mileage may vary" when missing 
data is involved. 

Historical data 

All models are built from historical time series data from IEX Cloud or 
cryptocompapre.com for crypto data.  As such, it only captures behavior that happened in 
the past and depends on the correctness of such data.  Rare Black Swan events are not 
modeled specifically except as they get thrown into the regular modeling procedures.  In 
fact, Black Swan type events are just treated as outliers in the data and may skew the 
results a bit, bullish or bearish.  Such is the trouble with forecasting using these types of 
models.  Nonetheless, the models are presented as-is for your consideration. 

Technical details 

As noted earlier, these types of models are a modified version of formal vector 
autoregression: 

http://en.wikipedia.org/wiki/Vector_autoregression 

Notable differences in this app: 

1. Only 1 target variable is solved at a time, we don't solve for all inputs versus all  
    outputs. 

2. We are only trying to solve for price direction (up or down), not an actual value, 
    though the "lstsq" (model 2) does solve internally for the actual (close - open)      
    value.  Only the correct/incorrect (direction) is reported in the current version of the  
    app. 

3. We introduce nonlinear solver methods, though the eventual model form is 
    linear (e.g. a weighted average of prior values) for model 1 (annealing classifier)      
    and model 2 (linear estimate). 

Splits or repricings and New listings 

http://cryptocompapre.com


Models are not corrected for splits, reverse-splits or other re-pricings.  A split or reprice 
will show up as an outlier in the data set and so may disrupt the model.  At this point, we 
don't recommend using the app on stocks or ETFs that have had repricings within the 
modeled and backtested time period. 

New listings with less than a year's worth of historical data may not work properly in the 
app, since we often use more than 200 trading days of historical data (by default) for 
building models.  There is no particular check for short historical data, but the model will 
probably not run correctly by default unless you reduce this look-back window.  This can 
be done in the Tune tab of the app.  Basically we need enough data to cover the look-back 
window and the backtest window, perhaps with a few points extra to avoid "edge" failure 
cases in the code.  When estimating how many points you need to run a model for a 
recent IPO or ICO, one should also include the length of the volatility computation 
(default 21 days), which is settable in the Tune tab.  As always, let backtesting be your 
guide. 

Miscellaneous / more advanced topics 

1.  Tune tab:  trailing volatility length (days) 

 This allows you to tune how far back the volatility computation is performed.   
 Changing this value may or may not help with model tuning and backtesting. 

high stairsteps indicating  
many failures in recent backtests 

spread-out failures in backtest, not many in a 
row suggests a better model (model 3)



2. Plots tab:  While the panel on the main Model tab showing model output displays a 
summary of backtest results and overall percent correct along with model quality 
estimates, the Plots tab shows the specific backtest results per day, and how many days in  
a row a bad forecast was made during the backtest.  This allows you to see if a model is 
getting better or worse over time in the backtest period.  The better case is if you don't see 
a large stack of stair-steps up (which indicate lot of failures in a row), but that the failures 
in the backtests are more spread-out (low stacks of stair-steps up).  Note that on the 
horizontal axis of the stair-step plots, it shows the recent time periods are to the left of the 
graph rather than to the right as traditionally plotted-- more recent backtest failures show 
up on the left. 

The sensitivity / coefficients plots allow you to see the estimated sensitivity of the 
forecast to the variables in the model.  This may be useful if you decide to pull the 
regression table from the Data & Info tab and build your own model.  It may provide a 
convenient starting point for which variables to include in such a model.  The top graph is 
estimated (unsigned) sensitivities from model 3 (which has a variable type depending on 
the setting you use:  currently the choices are K nearest neighbor and LassoLarsIC), and 
the bottom graph is signed coefficients of the full linear model. 

3. Lag structure (advanced):  We only use 2 days of lag in the model (lag in a time-series 
sense) as you can see if you download the data in the Data & Info tab or look at the 
sensitivity plots in the Plots tab, and we include opening prices and volatility (which by 
definition includes many days of data in it; 21 days by default; see the Tune tab in the app 
/ volatility length value).  We arrived at this by some coarse model testing and the general 
concept that "information more than 2 days old is likely priced into the market already."  
This is not always true and may preclude the model from picking up longer period cycles 
in the data (if any).  Such is a topic for model enhancement. 

4. Another difference from traditional VAR (Vector Auto Regression) models:  This app 
models close-open price on the future day, not (close price minus prior day's close price) 
as is done in standard VAR presentations.  We also include open prices and the historical 
volatility value in the model (also lagged), and are not limited to linear models of prior 
values as is traditional VAR. 

5. We do not include the current day's opening price in the close-open forecast.  If we 
were to do this, it would require the opening price to be known on the forecast day before 
we could make the forecast.  E.g. we couldn't make the forecast the day or night before.  
While including the current day's opening price in this type of model might improve 
forecast quality, such is more suited for automated trading since it is more time-critical 
(e.g. the forecast should be run immediately after market open) than a partly-manual 
model builder such as this. 

Notes 



[Note 1] For more discussion on this topic, see the following document, especially the 
first line: "Since its invention 90 years ago, the p value has become the standard by which 
most quantitative research is judged; however, it was never intended for this purpose."  

At least one issue noted in this document is addressed in our app in that we also provide 
the magnitude of correctness (the percent correct) during the backtest period.  There are 
p-values with respect to variables and p-values with respect to whole model forecasts.  
This app provides the latter. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738950/


